

Pre-Acceleration Linac in ICOOL Optimized FFAG Designs

J. Scott Berg
Muon Collaboration Friday Meeting
3 December 2004

Outline: Pre-Acceleration Linac in ICOOL

- Modifications to ICOOL
- Longitudinal acceptance
- Lattice functions
- Future work

Modifications to ICOOL

- RF phasing: new phasemodel (2)
 - ◆ Really track reference particle to define phase
 - ★ Zero crossing is the phase for which the reference particle gains no energy
 - * Add the cavity's phase to that, integrate reference particle through fields to get energy gain
 - Only works in restricted circumstances
 - **★** Assumes reference particle is on axis
 - **★** Only works for a couple of accel models
 - **★** Only works for fixed step size
 - ★ Code can be added to fix all these...
- New ACCEL model (13): open hard-edge pillbox cavity
 - Constant longitudinal profile, sinusoidal
 - ◆ Has hard-edge focusing on ends (can be turned off for either end)

Modifications to ICOOL (cont.)

- New SOL model (8): hard-edge solenoid
 - ◆ Simple fields: runs fast (10K particles in a few minutes)!
 - B_s constant, delta-function B_r on ends (can be selectively turned off)
 - ◆ Extra radially symmetric defocusing on ends
 - * Focusing strength is proportional to B_s^2

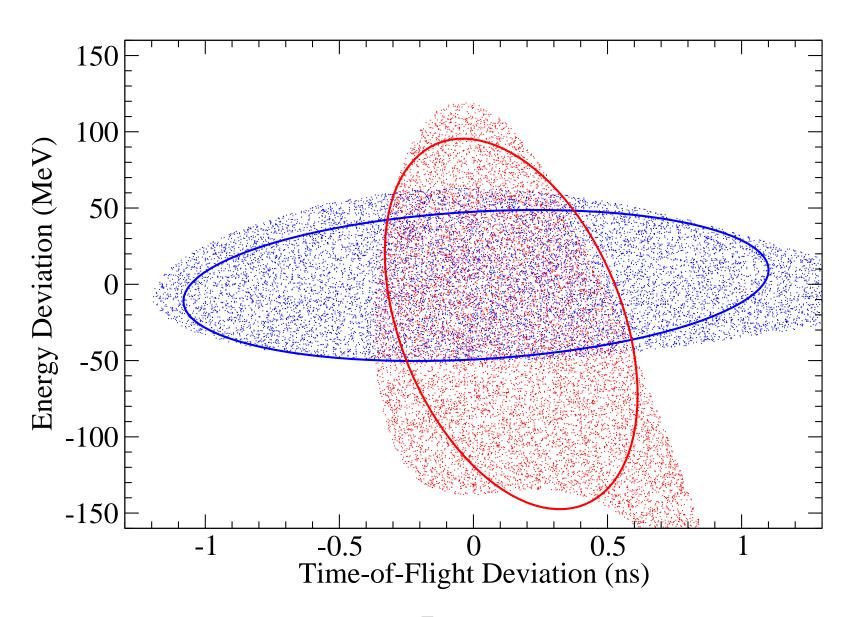
$$L \int_{0}^{L} B_{s}^{2} ds < \left(\int_{0}^{L} |B_{s}| \, ds \right)^{2}$$

★ Difference concentrated on ends: approximate by thin lens

General Comments on ICOOL Run

- Matches Alex's computation, with one exception: I use finite length cavities
 - ◆ Lower transit time factor at low energy
 - ◆ Slightly lower energy gain
 - Will have other effects (see soon)

Longitudinal Acceptance



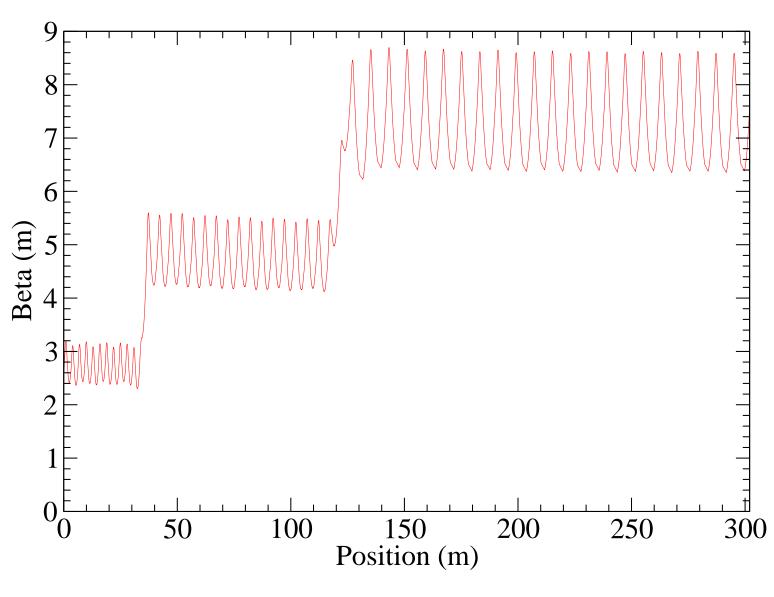
- Start with a wide uniform longitudinal distribution
- Track to end, keeping only particles within 1/2 bucket of ref particle
- Plot: particles that make it to end (red), same particles at beginning (blue)
- Ellipses: 150 mm acceptance, orientation computed through cuts
 - Start at end
 - **★** Compute covariance matrix
 - * Remove particles outside 2.1σ
 - ★ Repeat until no more particles cut
 - Remove corresponding particles at beginning, do iterative cut on beginning distribution
 - Remove corresponding particles at end, compute covariance matrix and draw ellipses

Longitudinal Acceptance

Longitudinal Acceptance

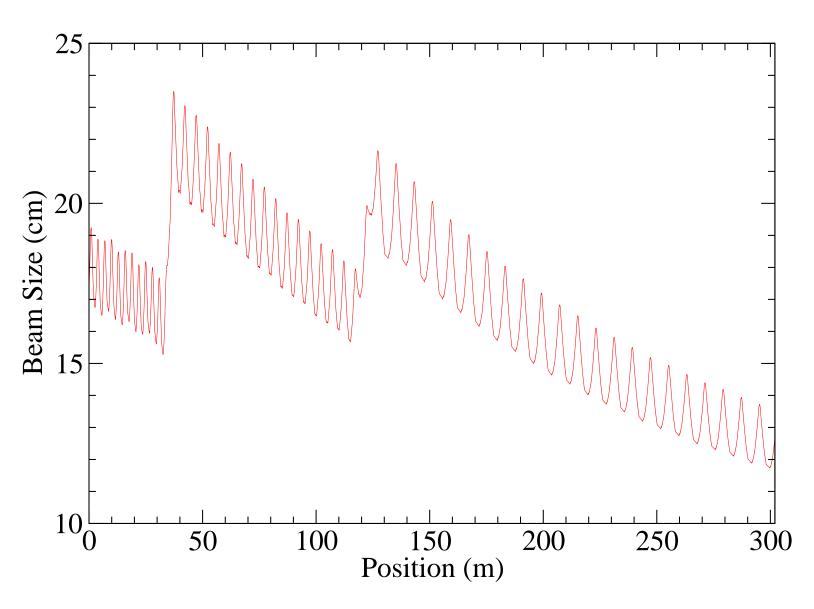
- Don't quite get 150 mm acceptance: close at start, not quite at end
 - ◆ Difference from Alex: lower effective gradient at beginning (transit time factor)
- Possible cures
 - ◆ Start further off crest: but already pretty far off crest (73°)!
 - May be caused by distortion at end on crest!
 - ★ Can check this: take snapshots at different points
 - ★ If so, want to narrow distribution more: can we modify RF phase profile?
 - ◆ Tighter lattice: shorter solenoids?
- Average energy is below reference particle energy (about 25 MeV)

Transverse Linear Lattice



- Send small amplitude particle through ICOOL to compute transfer matrix
- Compute beta functions, beam sizes at acceptance
 - ◆ Beginning of second stage is a bit large, but not too bad
 - ◆ Plenty of room at beginning of first stage
 - **★** Could start at lower energies
 - ★ Longitudinal acceptance is the issue

Beta Functions



Beam Size

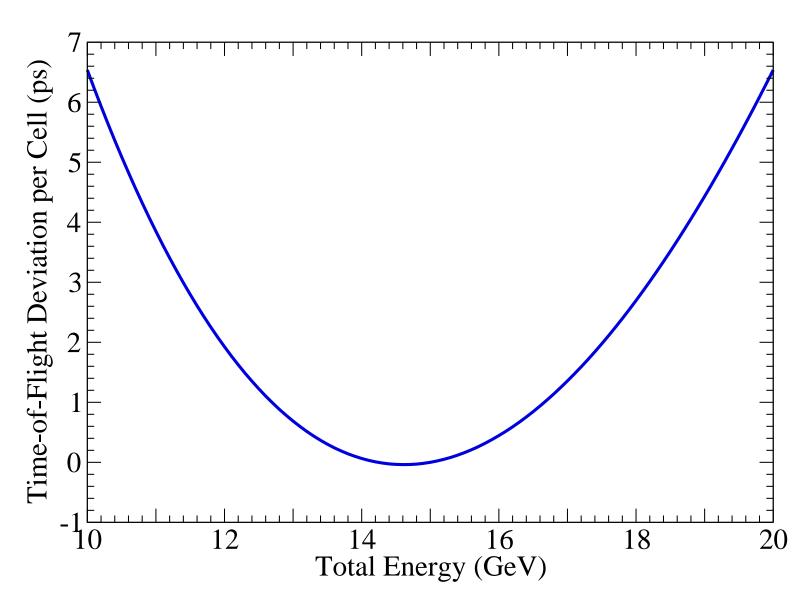
Continued Work

- Fix the longitudinal acceptance
 - ◆ Or demonstrate that we can live with it (e.g., subsequent systems transmit the distorted phase space)
- Check for emittance growth (tracking done, analysis not)
- Use more realistic solenoid model: nonlinearities
- Model remaining components (I have the dogbone linac...)

Outline: FFAG Designs

- Review of optimization process
- Review of previous results
- Updated Cost Model
- Characteristics of optimal lattices
- Minimum cost rings
- Decay cost
- Parametric dependencies of lattices
- New lattices
- Remaining work
- Conclusions

Review of Optimization Process



- Muon FFAG lattices consist of several identical cells of a particular type (doublet, FDF triplet, FODO)
- Assume 201.25 MHz RF
- A drift of at least 2 m is specified for the RF cavity
 - ◆ Purpose: keep field on superconducting cavities below 0.1 T
- Leave 0.5 m of space between magnets in doublet/triplet
- Time-of-flight vs. energy is parabolic-like; set height of parabola at min and max energy to be same
- For longitudinal acceptance, constrain $a = V/(\omega \Delta T \Delta E)$
 - $\bullet \Delta T$ is height of parabola (one turn), V is total voltage installed
 - ◆ Value of a depends on energy range, empirically chosen, increases with decreasing energy
- Factor of 2 in energy: 2.5–5 GeV, 5–10 GeV, 10–20 GeV

Time-of-Flight vs. Energy

Review of Previous Results of Optimization

- Doublet lattice is most cost effective
 - ◆ Triplet lattice has lowest voltage requirement, but
 - ◆ Three magnets per cell drives up magnet cost
 - ◆ Difference FD → FDF → FODO is around 5% each
- Cost per GeV of acceleration increases rapidly as energy decreases
 - ◆ 2.5–5 GeV of questionable cost value for muon acceleration

Updated Cost Model (Palmer)

- Compared to previous model
 - ◆ Cost at zero field for fixed magnet size does not go to zero
 - ◆ A new symmetry factor (quad/dipole/combined function) is used
 - ★ Proportional to amount of coil needed
 - **★** Factor is identical for dipoles and quadrupoles
 - * Factor is less than 1 for combined function
- Basic formula: product of 4 factors

$$f_B(\hat{B})f_G(\hat{R}, L)f_S(B_-/B_+)f_N(n)$$

- f_B : dependence on field
- f_G : geometric dependence: magnet length L
- f_S : symmetry dependence
- f_n : dependence on number of magnets being made n

Updated Cost Model (cont.)

• For linear midplane field profile $B_y = B_0 + B_1 x$,

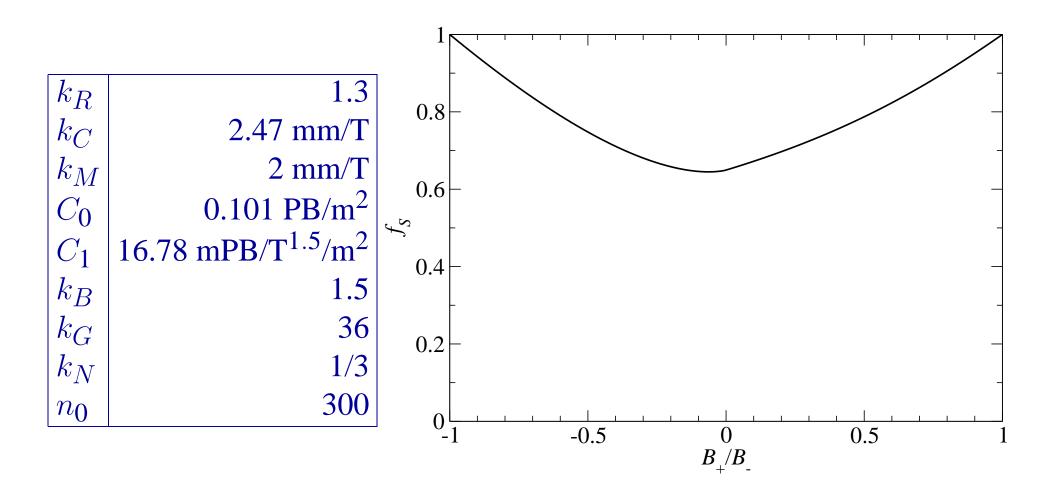
$$B_{\pm} = |B_0| \pm |B_1| \, k_R R$$

Peak field and larger radius it requires

$$\hat{B} = B_{+} + |B_{1}| k_{C} B_{+}$$
 $\hat{R} = k_{R} R + k_{M} \hat{B}$

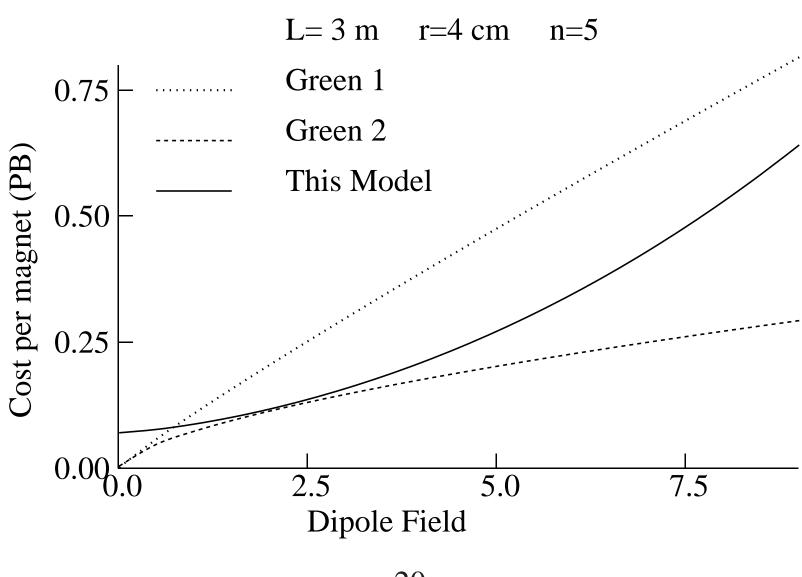
The factors

$$f_B(\hat{B}) = C_0 + C_1 \hat{B}^{k_B} \qquad f_G(\hat{R}, L) = \hat{R}(L + k_G \hat{R})$$


$$D = (1 + B_-/B_+)/2 \qquad Q = (1 - B_-/B_+)/2 = 1 - D$$

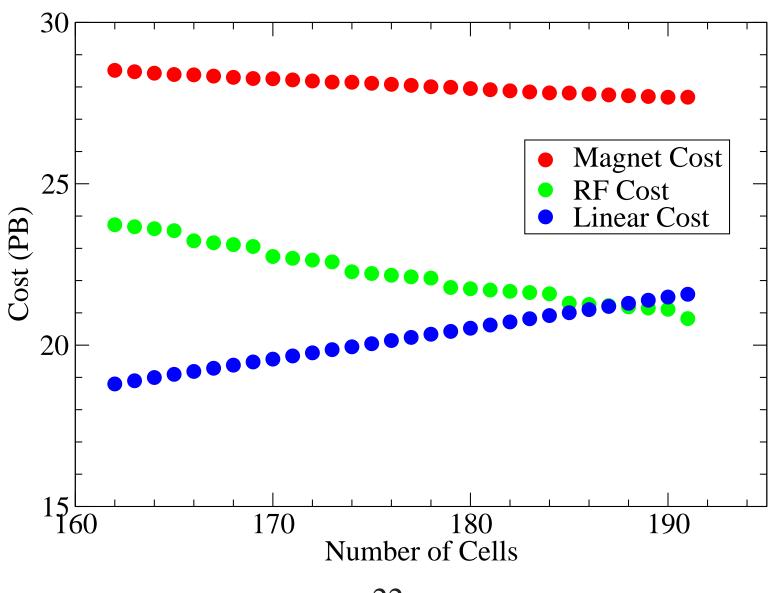
$$f_S(B_-/B_+) = \frac{\int_0^{\pi} |D\cos\theta + Q\cos 2\theta| d\theta}{\int_0^{\pi} |\cos\theta| d\theta} \qquad f_N(n) = (n_0/n)^{k_N}$$

Updated Cost Model (cont.)



Updated Cost Model (cont.)

Characteristics of Optimal Lattices



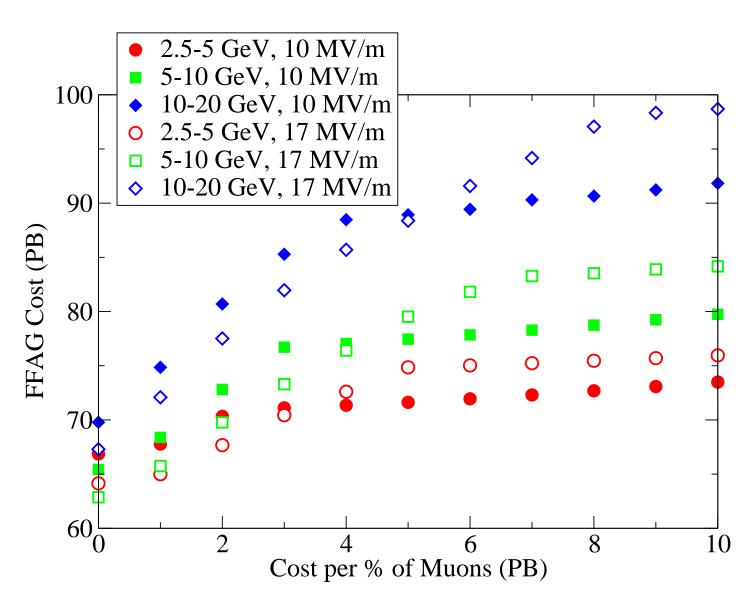
- For modest lengths, lattice (magnet+linear) cost decreases with increasing circumference
 - Reduced dispersion reduces aperture requirement
 - ◆ Remarkably, this cost reduction is goes down more quickly than inversely in the number of cells
 - ◆ At some point, this stops as the nonzero transverse beam size stops the decrease in the aperture
 - ◆ The minimum-cost solution does not have every cell filled with RF!

Costs vs. Number of Cells

Decay Cost

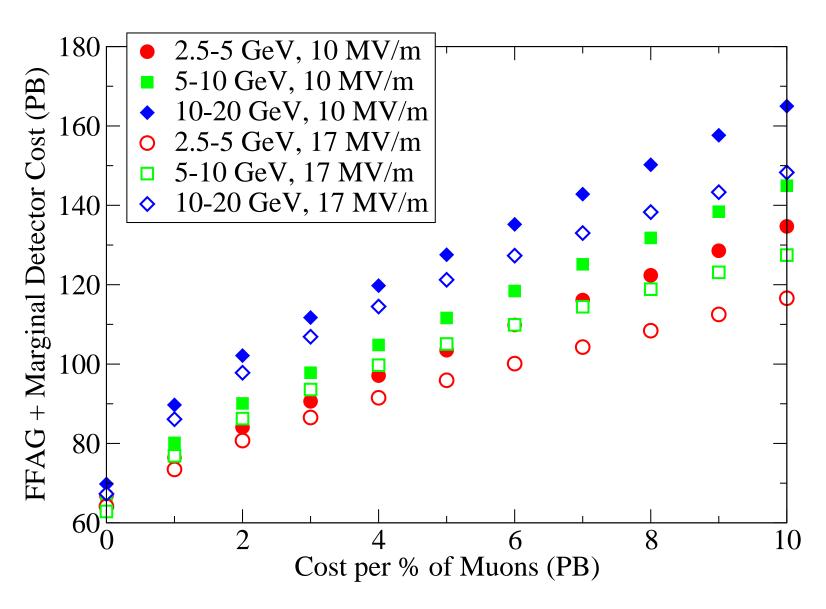
- The minimum cost rings are extremely long
 - Decays are unacceptably high
- Need to incorporate tradeoff between decays and cost of acceleration into optimization
 - ◆ Simplest thinking: can always make detector larger to make up for lost particles
 - Multiply detector cost by fractional loss
 - ◆ Over-simplifies things (e.g., as detector gets larger, fractional increase costs more)
 - ◆ Baseline: detector costs 500 PB

Parametric Dependencies

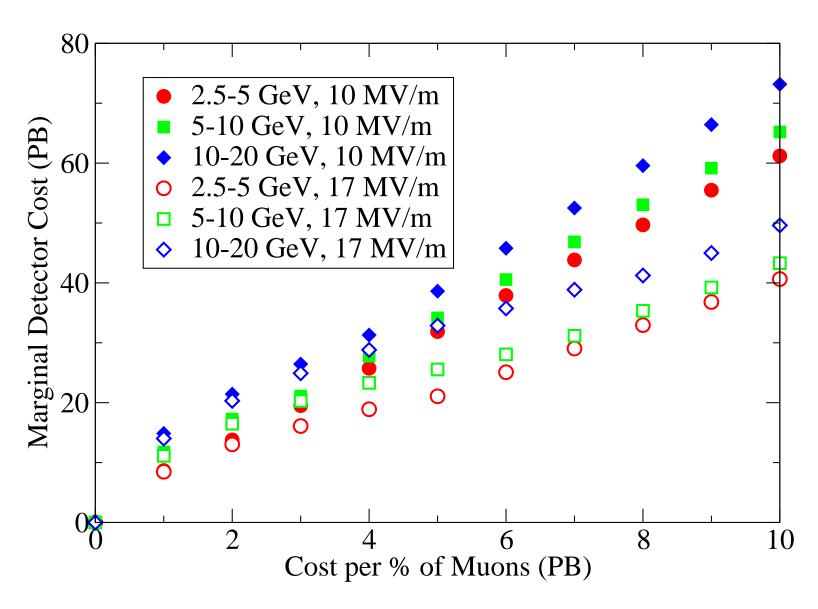


- Cost vs. decay cost
 - For low decay cost, ring is partially filled
 - ◆ As decay cost increases, ring optimized to reduce decay
 - * More RF
 - **★** Ring shortens
 - Once ring is filled, can't increase RF or shorten ring easily
 - * Ring shortens slightly: magnets shorter, higher field
 - **★** To get little gain, large increase in cost
 - ★ Detector cost increases more rapidly at this point
 - ◆ Higher gradient, can go longer before ring is filled
 - ◆ Total cost steadily increases with increasing decay cost

FFAG Cost vs. Decay Cost

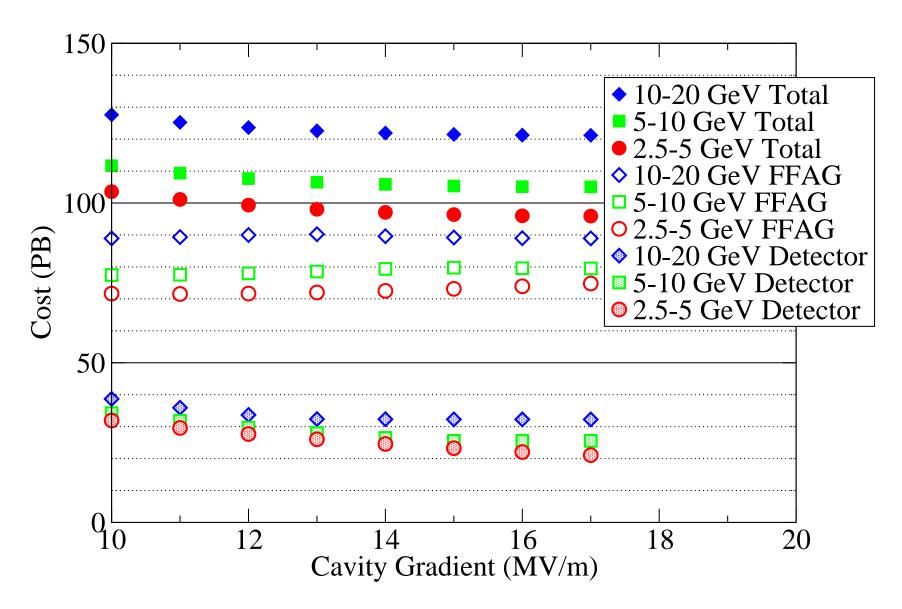


Total Cost vs. Decay Cost



Marginal Detector Cost vs. Decay Cost

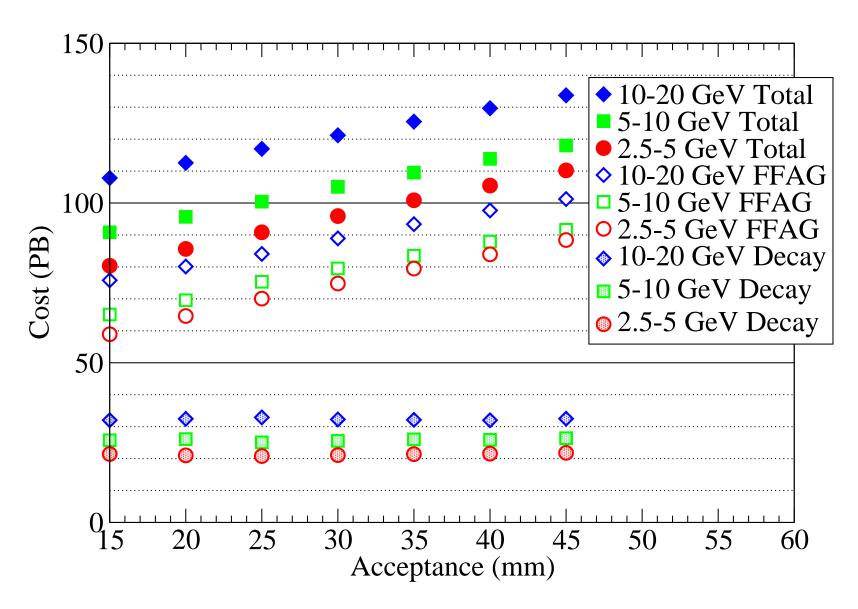
Cost vs. Gradient



- Use 5 PB/% for the muon cost
- Relatively weak dependency: higher gradient may not be worth it
 - ◆ Assumed structure costs independent of gradient
 - ★ Might need better surface
 - **★** Tougher requirements on input couplers
 - Higher cryo costs
- FFAG cost increases with increasing gradient for low gradients
 - ◆ Total cost decreases since detector cost decreases
 - Ring is filled
 - **★** Total voltage increases faster than cost per voltage
 - * Ring circumference decreases, increasing ring cost
- Higher gradients, can partially fill ring
 - Roughly same voltage and circumference
 - ◆ Fewer cavities

Cost vs. Gradient

Cost vs. Acceptance



- Strong dependence of cost on acceptance
- Primarily caused by increased magnet cost
 - ◆ Primarily coming from increased size (length and aperture)
 - Not really coming from increased fields

Cost vs. Acceptance

Another Mind-Numbing Lattice Table

	ı	ı	
Minimum total energy (GeV)	2.5	5	10
Maximum total energy (GeV)	5	10	20
$V/(\omega \Delta T \Delta E)$	1/6	1/8	1/12
No. of cells	50	65	82
D length (cm)	63	77	97
D radius (cm)	13.4	10.0	7.4
D pole tip field (T)	4.5	5.7	7.1
F length (cm)	96	113	140
F radius (cm)	21.2	16.3	13.1
F pole tip field (T)	2.7	3.5	4.3
No. of cavities	42	49	56
RF voltage (MV)	534	620	703
Turns	4.7	8.2	15.0
Circumference (m)	204	286	399
Decay (%)	4.2	5.1	6.5
Magnet cost (PB)	39.4	37.2	39.1
RF cost (PB)	30.3	35.2	39.9
Linear cost (PB)	5.1	7.1	10.0
Total cost (PB)	74.8	79.5	88.9
Cost per GeV (PB/GeV)	29.9	15.9	8.9

- Decay cost: 5 PB/%
- Acceptance 30 mm
- Choose 17 MV/m: Study II baseline
- Pole tip fields are higher than previously
- 2.5–5 GeV is borderline

Remaining Work for Optimization

- Choice of $V/(\omega \Delta T \Delta E)$ still empirical
 - ◆ I have a method of doing this, just haven't finished the calculations
- Work on choice of cavity drift length and inter-magnet drift
 - ◆ Let it depend on the magnet fields/apertures? How?
- Choice of aperture: should be coupled to cooling design
 - ◆ Can compute cooling cost vs. aperture when muon cost is included
 - Cooling cost decreases with increasing aperture
 - ◆ Add cooling cost and acceleration cost vs. aperture
 - Presumably there is an optimum aperture

Conclusions: FFAG Optimization

- I am using an improved cost model from Palmer
- An earlier notion that magnet costs increase with increasing number of cells was wrong. This has been addressed by including decay costs in the model.
- I have a set of lattices which are optimal to my current understanding
- I can produce "optimal" lattices at will for given constraints
- There are always improvements to be made...